Перспективные способы модуляции в широкополосных системах передачи данных. Квадратурная модуляция и ее характеристики (QPSK, QAM) Квадратурная фазовая модуляция

  • 07.07.2023

Посетовал на отсутствие статей описывающей физическую сторону передачи информации по радио каналу.
Мы решили исправить это упущение и написать цикл постов о беспроводной передаче данных.
В первом из них мы расскажем о главном аспекте передачи информации посредством радиосигнала – модуляции.


Модуля́ция (лат. modulatio - размерность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала.
Передаваемая информация заложена в управляющем сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим.
Модуляция может осуществляться изменением амплитуды, фазы или частоты высокочастотной несущей.
Эта техника дает несколько важных преимуществ:

  1. Позволяет сформировать радиосигнал, который будет обладать свойствами соответствующими свойствам несущей частоты. О свойствах волн разных частотных диапазонов можно почитать, например, .
  2. Позволяет использовать антенны малого размера, ведь размер антенны должен быть пропорционален длине волны.
  3. Позволяет избежать интерференции с другими радиосигналами.
Передаваемый в сетях WiMax поток данных соответствует частоте в районе 11 кГц. Если мы попробуем передавать этот низкочастотный сигнал по воздуху, нам понадобится антенна следующих размеров:


Антенна длинной 24 километра не кажется достаточно удобной в использовании.
Если же мы будем передавать этот сигнал наложенным на несущую частоту в 2.5 ГГц (частота используемая в Yota WiMax), то нам понадобится антенна длиной 12 см.

Аналоговая модуляция.

Прежде чем перейти непосредственно к цифровой модуляции, приведу картинку, иллюстрирующую аналоговую AM (амплитудную) и FM (частотную) модуляцию, которая освежит у многих школные познания:


исходный сигнал


AM (амплитудная модуляция)


FM (частотная модуляция)

Цифровая модуляция и ее типы.

В цифровой модуляции аналоговый несущий сигнал модулируется цифровым битовым потоком.
Существуют три фундаментальных типа цифровой модуляции (или шифтинга) и один гибридный:
  1. ASK – Amplitude shift keying (Амплитудная двоичная модуляция).
  2. FSK – Frequency shift keying (Частотая двоичная модуляция).
  3. PSK – Phase shift keying (Фазовая двоичная модуляция).
  4. ASK/PSK.
Упомяну, что существует традиция в русской терминологии радиосвязи использовать для модуляции цифровым сигналом термин «манипуляция».

В случае амплитудного шифтинга амплитуда сигнала для логического нуля может быть (например) в два раза меньше логической и единицы.
Частотная модуляция похожим образом представляет логическую единицу интервалом с большей частотой, чем ноль.
Фазовый шифтинг представляет «0» как сигнал без сдвига, а «1» как сигнал со сдвигом.
Да, тут мы как раз имеем дело со «сдвигом по фазе»:)
Каждая из схем имеет свои сильные и слабые стороны.
  • ASK хороша с точки зрения эффективности использования полосы частот, но подвержена искажениям при наличии шума и недостаточно эффективна с точки зрения потребляемой мощности.
  • FSK – с точностью до наоборот, энергетически эффективна, но не эффективно использует полосу частот.
  • PSK – хороша в обоих аспектах.
  • ASK/PSK – комбинация двух схем. Она позволяет еще лучше использовать полосу частот.
Самая простая PSK схема (показанная на рисунке) имеет собственное название - Binary phase-shift keying. Используется единственный сдвиг фазы между «0» и «1» - 180 градусов, половина периода.
Существуют также QPSK и 8-PSK:
QPSK использует 4 различных сдвига фазы (по четверти периода) и может кодировать 2 бита в символе (01, 11, 00, 10). 8-PSK использует 8 разных сдвигов фаз и может кодировать 3 бита в символе.

Одна из частных реализаций схемы ASK/PSK которая называется QAM - Quadrature Amplitude Modulation (квадратурная амплитудная модуляция (КАМ). Это метод объединения двух AM-сигналов в одном канале. Он позваляет удвоить эффективную пропускную способность. В QAM используется две несущих с одинаковой частотой но с разницей в фазе на четверть периода (отсюда и возникает слово квадратура). Более высокие уровни QAM строятся по тому же принципы, что и PSK. Если вас интересуют детали, вы без труда можете их найти в сети.
Теоретическая эффективность использования полосы пропускания:
Формат Эффективность (бит/с/Гц)
BPSK 1
QPSK 2
8-PSK 3
16-QAM 4
32-QAM 5
64-QAM 6
256-QAM 8

Чем сложнее схема модуляции, тем более пагубное воздействие на нее оказывают искажения при передаче, и тем меньше расстояние от базовой станции, на котором сигнал может быть успешно принят.
Теоретически возможны PSK и QAM схемы еще более высокого уровня, но на практике при их использовании возникает слишком большое количество ошибок.
Теперь, когда мы рассмотрели основные моменты, можно написать какие схемы модуляции применяются в сетях WiMax.

Модуляция сигнала в сетях WiMax.

В WiMax используется «динамическая адаптивная модуляция», которая позволяет базовой станции делать выбор между пропускной способностью и максимальным расстоянием до приемника. Чтобы увеличить дальность, базовая станция может переключиться между 64-QAM, 16-QAM и QPSK.

Заключение.

Я надеюсь, что у меня получилось соблюсти баланс между популярностью изложения и техничностью содержания. Если данная статья окажется востребованной, я продолжу работать в этом направлении. Технология WiMax имеет множество нюансов, о которых можно рассказать.

ЛикБез > Радиосвязь

Четырехпозиционная фазовая модуляция (QPSK)

Из теории связи известно, что наивысшей помехоустойчивостью обладает двоичная фазовая модуляция BPSK. Однако в ряде случаев за счет уменьшения помехоустойчивости канала связи можно увеличить его пропускную способность. Более того, при применении помехоустойчивого кодирования можно более точно планировать зону, охватываемую системой мобильной связи.

В четырехпозиционной фазовой модуляции используются четыре значения фазы несущего колебания. В этом случае фаза y(t) сигнала, описываемого выражением (25) должна принимать четыре значения: 0°, 90°, 180° и 270°. Однако чаще используются другие значения фаз: 45°, 135°, 225° и 315°. Такой вид представления квадратурной фазовой модуляции приведен на рисунке 1.


На этом же рисунке представлены значения бит, передаваемых каждым состоянием фазы несущего колебания. Каждое состояние осуществляет передачу сразу двух бит полезной информации. При этом содержимое бит выбрано таким образом, чтобы переход к соседнему состоянию фазы несущего колебания за счет ошибки приема приводил не более чем к одиночной битовой ошибке.

Обычно для формирования сигнала QPSK модуляции используется квадратурный модулятор. Для реализации квадратурного модулятора потребуется два умножителя и сумматор. На входы умножителей можно подавать входные битовые потоки непосредственно в коде NRZ. Структурная схема такого модулятора приведена на рисунке 2.


Так как при этом виде модуляции в течение одного символьного интервала передается сразу два бита входного битового потока, то символьная скорость этого вида модуляции составляет 2 бита на символ. Это означает, что при реализации модулятора следует разделять входной поток на две составляющих - синфазную составляющую I и квадратурную составляющую Q. Синхронизацию последующих блоков следует вести с символьной скоростью.

При такой реализации спектр сигнала на выходе модулятора получается ничем не ограниченный и его примерный вид приведен на рисунке 3.

Рисунок 3. Спектр сигнала четырехпозиционной фазовой модуляции QPSK, модулированного сигналом NRZ


Естественно, этот сигнал можно ограничить по спектру при помощи полосового фильтра, включенного на выходе модулятора, однако так никогда не делают. Намного эффективнее работает фильтр Найквиста. Структурная схема квадратурного модулятора сигнала QPSK, построенная с использованием фильтра Найквиста приведена на рисунке 4.

Рисунок 4. Структурная схема модулятора QPSK с использованием фильтра Найквиста


Фильтр Найквиста можно реализовать только с использованием цифровой техники, поэтому в схеме, приведенной на рисунке 17, перед квадратурным модулятором предусмотрен цифро-аналоговый преобразователь (ЦАП). Особенностью работы фильтра Найквиста является то, что в промежутках между отсчетными точками сигнал на его входе должен отсутствовать, поэтому на его входе стоит формирователь импульсов, выдающий сигнал на свой выход только в момент отсчетных точек. Все остальное время на его выходе присутствует нулевой сигнал.

Пример формы передаваемого цифрового сигнала на выходе фильтра Найквиста приведен на рисунке 5.

Рисунок 5. Пример временной диаграммы сигнала Q при четырехпозиционной фазовой модуляции QPSK


Так как для сужения спектра радиосигнала в передающем устройстве используется фильтр Найквиста, то межсимвольные искажения в сигнале отсутствуют только в сигнальных точках. Это отчетливо видно по глазковой диаграмме сигнала Q, приведенной на рисунке 6.


Кроме сужения спектра сигнала, применение фильтра Найквиста приводит к изменению амплитуды формируемого сигнала. В промежутках между отсчетными точками сигнала амплитуда может, как возрастать по отношению к номинальному значению, так и уменьшаться почти до нулевого значения.

Для того чтобы отследить изменения, как амплитуды сигнала QPSK, так и его фазы лучше воспользоваться векторной диаграммой. Векторная диаграмма того же самого сигнала, что приведен на рисунках 5 и 6, показана на рисунке 7.

Рисунок 7 векторная диаграмма QPSK сигнала c a = 0.6


Изменение амплитуды сигнала QPSK видно и на осциллограмме сигнала QPSK на выходе модулятора. Наиболее характерный участок временной диаграммы сигнала, приведенного на рисунках 6 и 7, показан на рисунке 8. На этом рисунке отчетливо видны как провалы амплитуды несущей модулированного сигнала, так и увеличение ее значения относительно номинального уровня.

Рисунок 8. временная диаграмма QPSK сигнала c a = 0.6


Сигналы на рисунках 5 ... 8 приведены для случая использования фильтра Найквиста с коэффициентом скругления a = 0.6. При использовании фильтра Найквиста с меньшим значением этого коэффициента влияние боковых лепестков импульсной характеристики фильтра Найквиста будет сказываться сильнее и явно прослеживающиеся на рисунках 6 и 7 четыре пути прохождения сигналов сольются в одну непрерывную зону. Кроме того, возрастут выбросы амплитуды сигнала относительно номинального значения.

Рисунок 9 – спектрограмма QPSK сигнала c a = 0.6


Присутствие амплитудной модуляции сигнала приводит к тому, что в системах связи, использующих этот вид модуляции, приходится использовать высоколинейный усилитель мощности. К сожалению, такие усилители мощности обладают низким кпд.

Частотная модуляция с минимальным разносом частот MSK позволяет уменьшить ширину полосы частот, занимаемых цифровым радиосигналом в эфире. Однако даже этот вид модуляции не удовлетворяет всем требованиям, предъявляемым к современным радиосистемам мобильной связи. Обычно сигнал MSK в радиопередатчике дофильтровывают обычным фильтром. Именно поэтому появился еще один вид модуляции с еще более узким спектром радиочастот в эфире.

Из теории связи известно, что наивысшей помехоустойчивостью обладает двоичная фазовая модуляция BPSK. Однако в ряде случаев за счет уменьшения помехоустойчивости канала связи можно увеличить его пропускную способность. Более того, при применении помехоустойчивого кодирования можно более точно планировать зону, охватываемую системой мобильной связи.

В четырехпозиционной фазовой модуляции используются четыре значения фазы несущего колебания. В этом случае фаза y(t) сигнала, описываемого выражением (25) должна принимать четыре значения: 0°, 90°, 180° и 270°. Однако чаще используются другие значения фаз: 45°, 135°, 225° и 315°. Такой вид представления квадратурной фазовой модуляции приведен на рисунке 1.


Рисунок 1. Полярная диаграмма сигнала четырехпозиционной фазовой модуляции QPSK

На этом же рисунке представлены значения бит, передаваемых каждым состоянием фазы несущего колебания. Каждое состояние осуществляет передачу сразу двух бит полезной информации. При этом содержимое бит выбрано таким образом, чтобы переход к соседнему состоянию фазы несущего колебания за счет ошибки приема приводил не более чем к одиночной битовой ошибке.

Обычно для формирования сигнала QPSK модуляции используется квадратурный модулятор. Для реализации квадратурного модулятора потребуется два умножителя и . На входы умножителей можно подавать входные битовые потоки непосредственно в коде NRZ. такого модулятора приведена на рисунке 2.



Рисунок 2. Структурная схема модулятора QPSK – NRZ

Так как при этом в течение одного символьного интервала передается сразу два бита входного битового потока, то символьная скорость этого вида модуляции составляет 2 бита на символ. Это означает, что при реализации модулятора следует разделять входной поток на две составляющих — синфазную составляющую I и квадратурную составляющую Q. Синхронизацию последующих блоков следует вести с символьной скоростью.

При такой реализации спектр сигнала на выходе модулятора получается ничем не ограниченный и его примерный вид приведен на рисунке 3.



Рисунок 3. Спектр сигнала четырехпозиционной фазовой модуляции QPSK, модулированного сигналом NRZ

Естественно, этот сигнал можно ограничить по спектру при помощи полосового фильтра, включенного на выходе модулятора, однако так никогда не делают. Намного эффективнее работает фильтр Найквиста. Структурная схема квадратурного модулятора сигнала QPSK, построенная с использованием фильтра Найквиста приведена на рисунке 4.



Рисунок 4. Структурная схема модулятора QPSK с использованием фильтра Найквиста

Фильтр Найквиста можно реализовать только с использованием цифровой техники, поэтому в схеме, приведенной на рисунке 4, перед квадратурным модулятором предусмотрен цифро-аналоговый преобразователь (ЦАП). Особенностью работы фильтра Найквиста является то, что в промежутках между отсчетными точками сигнал на его входе должен отсутствовать, поэтому на его входе стоит формирователь импульсов, выдающий сигнал на свой выход только в момент отсчетных точек. Все остальное время на его выходе присутствует нулевой сигнал.

Пример формы передаваемого цифрового сигнала на выходе фильтра Найквиста приведен на рисунке 5. Сигнал на графике выглядит непрерывным благодаря достаточно высокой частоте дискретизации.



Рисунок 5. Пример временной диаграммы сигнала Q при четырехпозиционной фазовой модуляции QPSK

Так как для сужения спектра радиосигнала в передающем устройстве используется фильтр Найквиста, то межсимвольные искажения в сигнале отсутствуют только в сигнальных точках. Это отчетливо видно по глазковой диаграмме сигнала Q, приведенной на рисунке 6.



Рисунок 6. глазковая диаграмма сигнала на входе Q модулятора

Кроме сужения спектра сигнала, применение фильтра Найквиста приводит к изменению амплитуды формируемого сигнала. В промежутках между отсчетными точками сигнала амплитуда может, как возрастать по отношению к номинальному значению, так и уменьшаться почти до нулевого значения.

Для того чтобы отследить изменения, как амплитуды сигнала QPSK, так и его фазы лучше воспользоваться векторной диаграммой. Векторная диаграмма того же самого сигнала, что приведен на рисунках 5 и 6, показана на рисунке 7.


Рисунок 7 векторная диаграмма QPSK сигнала c α = 0.6

Изменение амплитуды сигнала QPSK видно и на осциллограмме сигнала QPSK на выходе модулятора. Наиболее характерный участок временной диаграммы сигнала, приведенного на рисунках 6 и 7, показан на рисунке 8. На этом рисунке отчетливо видны как провалы амплитуды несущей модулированного сигнала, так и увеличение ее значения относительно номинального уровня.



Рисунок 8. временная диаграмма QPSK сигнала c α = 0.6

Сигналы на рисунках 5 ... 8 приведены для случая использования фильтра Найквиста с коэффициентом скругления a = 0.6 . При использовании фильтра Найквиста с меньшим значением этого коэффициента влияние боковых лепестков импульсной характеристики фильтра Найквиста будет сказываться сильнее и явно прослеживающиеся на рисунках 6 и 7 четыре пути прохождения сигналов сольются в одну непрерывную зону. Кроме того, возрастут выбросы амплитуды сигнала относительно номинального значения.



Рисунок 9 – спектрограмма QPSK сигнала c α = 0.6

Присутствие амплитудной модуляции сигнала приводит к тому, что в системах связи, использующих этот вид модуляции, приходится использовать высоколинейный усилитель мощности. К сожалению, такие усилители мощности обладают низким кпд.

Частотная модуляция с минимальным разносом частот позволяет уменьшить ширину полосы частот, занимаемых цифровым радиосигналом в эфире. Однако даже этот вид модуляции не удовлетворяет всем требованиям, предъявляемым к современным радиосистемам мобильной связи. Обычно сигнал MSK в радиопередатчике дофильтровывают обычным фильтром. Именно поэтому появился еще один вид модуляции с еще более узким спектром радиочастот в эфире.

Литература:

  1. "Проектирование радиоприемных устройств" под ред. А.П. Сиверса - М.: "Высшая школа" 1976 стр. 6
  2. Палшков В.В. "Радиоприемные устройства" - М.: "Радио и связь" 1984 стр. 32

Вместе со статьей "Четырехпозиционная фазовая модуляция (QPSK)" читают:


http://сайт/UGFSvSPS/modul/DQPSK/


http://сайт/UGFSvSPS/modul/BPSK/


http://сайт/UGFSvSPS/modul/GMSK/


http://сайт/UGFSvSPS/modul/FFSK/

Фазоманипулированный сигнал имеет вид:

где и – постоянные параметры, – несущая частота.

Информация передается посредством фазы . Так как при когерентной демодуляции в приемнике имеется несущая , то путем сравнения сигнала (3.21) с несущей вычисляется текущий сдвиг фазы . Изменение фазы взаимнооднозначно связано с информационным сигналом .

Двоичная фазовая манипуляции (BPSK – Binary Phase Shift Keying)

Множеству значений информационного сигнала ставится в однозначное соответствие множество изменений фазы . При изменении значения информационного сигнала фаза радиосигнала изменяется на 180º. Таким образом, сигнал BPSK можно записать в виде

Следовательно, . Таким образом, для осуществления BPSK достаточно умножить сигнал несущей на информационный сигнал, который имеет множество значений . На выходе модулятора сигналы

, .


Рис. 3.38. Временная форма и сигнальное созвездие сигнала BPSK:

а – цифровое сообщение; б – модулирующий сигнал; в – модулированное ВЧ-колебание; г – сигнальное созвездие

Временная форма сигнала и его созвездие показаны на рис.3.38.

Подвидом семейства BPSK является дифференциальная (относительная) BPSK (DBPSK). Необходимость относительной модуляции обусловлена тем, что большинство схем восстановления несущей частоты приводят к фазовой неоднозначности восстановленной несущей. В результате восстановления может образоваться постоянный фазовый сдвиг, кратный 180º. Сравнение принимаемого сигнала с восстановленной несущей приведет в этом случае к инвертированию (изменению значений всех битов на противоположные). Этого можно избежать, если кодировать не абсолютный сдвиг фазы, а его изменение относительно значения на предыдущем битовом интервале. Например, если на текущем битовом интервале значение бита изменилось по сравнению с предыдущим, то изменяется и значение фазы модулированного сигнала на 180º, если осталось прежним, то фаза также не изменяется.

Спектральная плотность мощности сигнала BPSK совпадает с плотностью сигнала OOK за исключением отсутствия в спектре сигнала несущей частоты:

, (3,22)

Квадратурная фазовая манипуляция (QPSK – Quadrature Phase Shift Keying)

Квадратурная фазовая манипуляция является четырехуровневой фазовой манипуляцией ( =4), при которой фаза высокочастотного колебания может принимать 4 различных значения с шагом, кратным π / 2 .

Соотношение между сдвигом фазы модулированного колебания из множества и множеством символов (дибитов) цифрового сообщения устанавливается в каждом конкретном случае стандартом на радиоканал и отображается сигнальным созвездием рис.3.39. Стрелками показаны возможные переходы из одного фазового состояния в другое.

Из рисунка видно, что соответствие между значениями символов и фазой сигнала установлено таким образом, что в соседних точках сигнального созвездия значения соответствующих символов отличаются лишь в одном бите. При передаче в условиях шума наиболее вероятной ошибкой будет определение фазы соседней точки созвездия. При указанном кодировании, несмотря на то, что произошла ошибка в определении значения символа, это будет соответствовать ошибке в одном (а не двух) бите информации. Таким образом, достигается снижение вероятности ошибки на бит. Указанный способ кодирования называется кодом Грея.

Каждому значению фазы модулированного сигнала соответствует 2 бита информации, и поэтому изменение модулирующего сигнала при QPSK-модуляции происходит в 2 раза реже, чем при BPSK-модуляции при одинаковой скорости передачи информации. Известно, что спектральная плотность мощности многоуровневого сигнала совпадает со спектральной плотностью мощности бинарного сигнала при замене символьного интервала на символьный . Для четырехуровневой модуляции =4 и, следовательно, .

Спектральная плотность мощности QPSK-сигнала при модулирующем сигнале с импульсами прямоугольной формы на основании (3.22) определяется выражением:

.

Из данной формулы видно, что расстояние между первыми нулями спектральной плотности мощности сигнала QPSK равно , что в 2 раза меньше, чем для сигнала BPSK. Другими словами, спектральная эффективность квадратурной модуляции QPSK в 2 раза выше, чем бинарной модуляции ВPSK.

Сигнал QPSK можно записать в виде

где .

Сигнал QPSK можно представить в виде синфазной и квадратурной составляющих

где - синфазная составляющая - го символа,

Квадратурная фазовая модуляция QPSK (Quadrate Phase Shift Keying) является четырехуровневой фазовой модуляцией (M = 4 ), при которой фаза ВЧ колебания может принимать четыре различных значения с шагом, равным

π / 2 . Каждое

значение фазы

модулированного сигнала

содержит два бита информации. Поскольку

абсолютные

значения фаз

не имеют значения, выберем

± π 4, ± 3 π 4 .

Соответствие

значениями

модулированного сигнала ± π 4, ± 3 π 4

и передаваемыми

дибитами информационной последовательности 00, 01, 10, 11 устанавливается кодом Грея (см. рис.3.13) или какимлибо иным алгоритмом. Очевидно, что значения модулирующего сигнала при QPSK модуляции изменяются в два раза реже, чем при BPSK модуляции (при одинаковой скорости передачи информации).

Комплексная огибающая g (t ) при QPSK модуляции

представляет собой псевдослучайный полярный baseband сигнал, квадратурные компоненты которого, согласно

(3.41), принимают численные значения ± 1 2 . При этом

длительность каждого символа комплексной огибающей в два раза больше, чем символов в исходном цифровом модулирующем сигнале. Как известно, спектральная плотность мощности многоуровневого сигнала совпадает со спектральной плотностью мощности бинарного сигнала при

M = 4 и, следовательно, T s = 2T b . Соответственно спектральная плотность мощности QPSK сигнала (для

положительных частот) на основании уравнения (3.28) определяется выражением:

P(f ) = K × {

sin 2

p×(f - f

) × 2 ×T

Из уравнения (3.51) следует, что расстояние между первыми нулями в спектральной плотности мощности QPSK сигнала равно D f = 1 T b , что в два раза меньше, чем

для модуляции BPSK. Другими словами, спектральная эффективность квадратурной QPSK модуляции в два раза выше, чем бинарной фазовой модуляции BPSK.

cos(ωc t )

Формирующий

w(t)

Формирователь

квадратурных

Сумматор

компонент

I(t)

sin(ωc t )

Формирующий

Рис .3.15 . Квадратурный модулятор QPSK сигнала

Функциональная схема квадратурного QPSK модулятора показана на рис.3.15. На преобразователь кода поступает цифровой сигнал со скоростью R . Преобразователь кода формирует квадратурные компоненты комплексной

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

огибающей в соответствии с табл.3.2 со скоростью, в два раза меньшей по сравнению с исходной. Формирующие фильтры обеспечивают заданную полосу частот модулирующего (и соответственно модулированного) сигнала. Квадратурные компоненты несущей частоты поступают на ВЧ перемножители от схемы синтезатора частоты. На выходе сумматора имеет место результирующий модулированный QPSK сигнал s (t ) в

соответствии с (3.40).

Таблица 3.2

Формирование QPSK сигнала

cos[θk ]

sin[θk ]

компонента

I -компонента

Сигнал QPSK, так же как и сигнал BPSK, не содержит в своем спектре несущей частоты и может быть принят только с помощью когерентного детектора, который является зеркальным отражением схемы модулятора и

s(t)

cos(ωc t )

восстановления

цифрового

sin(ωc t )

I(t)

Рис .3.16 . Квадратурный демодулятор QPSK сигнала

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

показан на рис.3.16.

3.3.4. Дифференциальная бинарная фазовая модуляция DBPSK

Принципиальное отсутствие несущей частоты в спектре модулированного сигнала в некоторых случаях приводит к неоправданному усложнению демодулятора в приемнике. QPSK и BPSK сигналы могут быть приняты только когерентным детектором, для реализации которого необходимо либо передавать наравне с сигналом еще и опорную частоту, либо реализовать в приемнике специальную схему восстановления несущей. Существенное упрощение схемы детектора достигается в том случае, когда фазовая модуляция реализуется в дифференциальной форме DBPSK (Differential Binary Phase Shift Keying).

Идея дифференциального кодирования состоит в том, чтобы передавать не абсолютное значение информационного символа, а его изменение (или не изменение) относительно предыдущего значения. Другими словами, каждый последующий передаваемый символ содержит в себе информацию о предыдущем символе. Тем самым для извлечения исходной информации при демодуляции в качестве опорного сигнала можно использовать не абсолютное, а относительное значение модулируемого параметра несущей частоты. Алгоритм дифференциального бинарного кодирования описывается следующей формулой:

d k =

m k Å d k −1

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

где { m k } - исходная бинарная последовательность; {d k }-

результирующая бинарная последовательность; Å - символ сложения по модулю 2.

Пример дифференциального кодирования показан в табл.3.3.

Таблица 3.3

Дифференциальное кодирование бинарного

цифрового сигнала

{d k

{d k

Аппаратно дифференциальное кодирование реализуется в виде схемы задержки сигнала на временной интервал, равный длительности одного символа в бинарной информационной последовательности и схемы сложения по модулю 2 (рис.3.17).

Логическая схема

d k =

m k Å d k −1

Линия задержки

Рис .3.17. Дифференциальный кодер DBPSK сигнала

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Дифференциальный некогерентный детектор DBPSK сигнала на промежуточной частоте показан на рис.3.18.

Детектор осуществляет задержку принятого импульса на один символьный интервал, а затем перемножение полученного и задержанного символов:

s k × s k −1 = d k sin(w c t )d k −1 × sin(w c t ) = 1 2 d k × d k −1 × .

После фильтрации с помощью ФНЧ или согласованного

Очевидно, что ни временная форма комплексной огибающей, ни спектральный состав дифференциального DВPSK сигнала не будут отличаться от обычного BPSK сигнала.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

3.3.5. Дифференциальная квадратурная фазовая модуляция π/4 DQPSK

Модуляция π/4 DQPSK (Differential Quadrate Phase Shift Keying) является формой дифференциальной фазовой модуляции, специально разработанной для четырехуровневых QPSK сигналов. Сигнал этого вида модуляции может быть демодулирован некогерентным детектором, как это свойственно сигналам DBPSK модуляции.

Отличие дифференциального кодирования в π/4 DQPSK модуляции от дифференциального кодирования в DBPSK модуляции состоит в том, что передается относительное изменение не модулирующего цифрового символа, а модулируемого параметра, в данном случае фазы. Алгоритм формирования модулированного сигнала поясняется табл.3.4.

Таблица 3.4

Алгоритм формирования сигнала π/4 DQPSK

Информацион

ный дибит

Приращение

ϕ = π 4

ϕ = 3 π 4

ϕ = −3 π 4

ϕ = − π 4

фазового угла

Q -компонента

Q = sin (θk ) = sin (θk − 1 +

I -компонента

I = cos(θ k ) = cos(θ k − 1 +

Каждому дибиту исходной информационной последовательности ставится в соответствие приращение фазы несущей частоты. Величина приращения фазового угла кратна π/4. Следовательно, абсолютный фазовый угол θ k может принимать восемь различных значений с шагом

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

π/4, а каждая квадратурная компонента комплексной огибающей - одно из пяти возможных значений:

0, ±1 2 , ±1 . Переход от одной фазы несущей частоты к другой можно описать с помощью диаграммы состояний на рис.3.13 для M = 8 поочередным выбором абсолютного значения фазы несущей частоты из четырехпозиционных

Блок-схема π/4 DQPSK модулятора показана на рис.3.19. Исходный бинарный цифровой модулирующий сигнал поступает в преобразователь код-фаза. В преобразователе после задержки сигнала на один символьный интервал определяется текущее значение дибита и соответствующее ему приращение фазы φ k несущей частоты. Это

приращение фазы поступает на вычислители квадратурных I Q компонент комплексной огибающей (табл.3.3). Выход

I Q вычислителей представляет собой пятиуровневый

цифровой сигнал с длительностью импульсов, в два раза

Q = cos(θk –1 + Δφ)

Формирующий фильтр

cos(ωc t )

Δφk

wk (t)

Преобразователь

Δφk

sin(ωc t )

I = sin(θk –1 + Δφ)

Формирующий фильтр

Рис .3.19 . Функциональная схема π/4 DQPSK модулятора

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

превышающей длительность импульсов исходного бинарного цифрового сигнала. Далее квадратурные I (t ), Q (t ) компоненты комплексной огибающей проходят

формирующий фильтр и поступают на высокочастотные перемножители для формирования квадратурных компонент высокочастотного сигнала. На выходе высокочастотного сумматора имеет место полностью сформированный

π/4 DQPSK сигнал.

Демодулятор π/4 DQPSK сигнала (рис.3.20) предназначен для детектирования квадратурных компонент модулирующего сигнала и имеет структуру, похожую на структуру демодулятора DBPSK сигнала. Входной ВЧ сигнал r (t ) = cos(ω c t + θ k ) на промежуточной частоте

rI (t)

r(t)

Задержка τ = T s

Решающее w(t) устройство

Сдвиг фазы Δφ = π/2

rQ (t)

Рис .3.20 . Демодулятор π/4 DQPSK сигнала на промежуточной частоте

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

поступает на вход схемы задержки и ВЧ перемножители. Сигнал на выходе каждого перемножителя (после удаления высокочастотных компонент) имеет вид:

r I (t ) = cos(w c t + q k ) × cos(w c t + q k −1 ) = cos(Df k );

r Q (t ) = cos(w c t + q k ) × sin(w c t + q k −1 ) = sin(Df k ).

Решающее устройство анализирует baseband сигналы на выходе каждого ФНЧ. Определяется знак и величина приращения фазового угла, а, следовательно, и значение принятого дибита. Аппаратурная реализация демодулятора на промежуточной частоте (см. рис.3.20) является не простой задачей из-за высоких требований к точности и стабильности высокочастотной схемы задержки. Более распространен вариант схемы демодулятора π/4 DQPSK сигнала с непосредственным переносом модулированного сигнала в baseband диапазон, как это показано на рис.3.21.

r(t)

r11 (t)

rQ (t)

τ = T s

cos(ωc t + γ)

r1 (t)

r12 (t)

rI (t)

r21 (t)

sin(ωc t + γ)

r2 (t)

r22 (t)

τ = T s

Рис .3.21 . Демодулятор π/4 QPSK сигнала в baseband диапазоне

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Непосредственный перенос модулированного сигнала в baseband диапазон позволяет реализовать полностью

переноса спектра модулированного колебания в baseband диапазон. Опорные сигналы, также поступающие на входы ВЧ перемножителей, не синхронизированы по фазе с несущей частотой модулированного колебания. В результате baseband сигналы на выходе фильтров низкой частоты имеют произвольный фазовый сдвиг, который считается постоянным в течение символьного интервала:

(t ) = cos(w c t + q k ) × cos(w c t + g ) = cos(q k - g );

r 2 (t ) = cos(w c t + q k ) × sin(w c t + g ) = sin(q k - g ),

где γ - сдвиг фазы между принимаемым и опорным сигналами.

Демодулированные baseband сигналы поступают на две схемы задержки и четыре baseband перемножителя, на выходах которых имеют место следующие сигналы:

r 11 (t ) = cos(q k - g ) × cos(q k −1 - g );

r 22 (t ) = sin(q k - g ) × sin(q k −1 - g );

r 12 (t ) = cos(q k - g ) × sin(q k −1 - g );

r 21 (t ) = sin(q k - g ) × cos(q k −1 - g ).

В результате суммирования выходных сигналов перемножителей исключается произвольный фазовый сдвиг γ, остается только информация о приращении фазового угла несущей частоты Δφ:

Dj k );

r I (t ) = r 12 (t ) + r 21 (t ) =

R 12 (t ) = cos(q k - g ) × sin(q k −1 - g ) + r 21 (t ) =

Sin(q k - g ) × cos(q k −1 - g ) = sin(q k - q k −1 ) = sin(Dj k ).

Реализация схемы задержки в baseband диапазоне и

последующая цифровая обработка демодулированного сигнала существенно повышают стабильность работы схемы и достоверность приема информации.

3.3.6. Квадратурная сдвиговая фазовая модуляция

Квадратурная сдвиговая фазовая модуляция OQPS (Offset Quadrate Phase Shift Keying) является частным случаем квадратурной модуляции QPSK. Огибающая несущей частоты QPSK сигнала теоретически постоянна. Однако при ограничении полосы частот модулирующего сигнала свойство постоянства амплитуды фазомодулированного сигнала утрачивается. При передаче сигналов с BPSK или QPSK модуляцией изменение фазы на символьном интервале может быть величиной π или p 2 . Интуитивно

понятно, что чем больше мгновенный скачок фазы несущей, тем больше сопутствующая АМ, возникающая при ограничении спектра сигнала. В самом деле, чем больше величина мгновенного изменения амплитуды сигнала при изменении его фазы, тем большую величину имеют гармоники спектра, соответствующего этому временному скачку. Другими словами, при ограничении спектра сигнала

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

величина возникающей внутренней АМ будет пропорциональна величине мгновенного скачка фазы несущей частоты.

В QPSK сигнале можно ограничить максимальный скачок фазы несущей, если использовать временной сдвиг величиной T b между Q и I каналами, т.е. ввести элемент

задержки величиной T b в канал Q или I . Использование

временного сдвига приведет к тому, что полное необходимое изменение фазы будет происходить в два этапа: сначала изменяется (или не изменяется) состояние одного канала, затем другого. На рис.3.22 показана последовательность модулирующих импульсов Q (t ) и I (t ) в

квадратурных каналах для обычной QPSK модуляции.

Q(t)

I(t)

I(t– Tb )

2T s

Рис .3.22 . Модулирующие сигналы в I/Q каналах при QPSK

и OQPSK модуляции

Длительность каждого импульса равна T s = 2 T b . Изменение фазы несущей при изменении любого символа в I или Q

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com